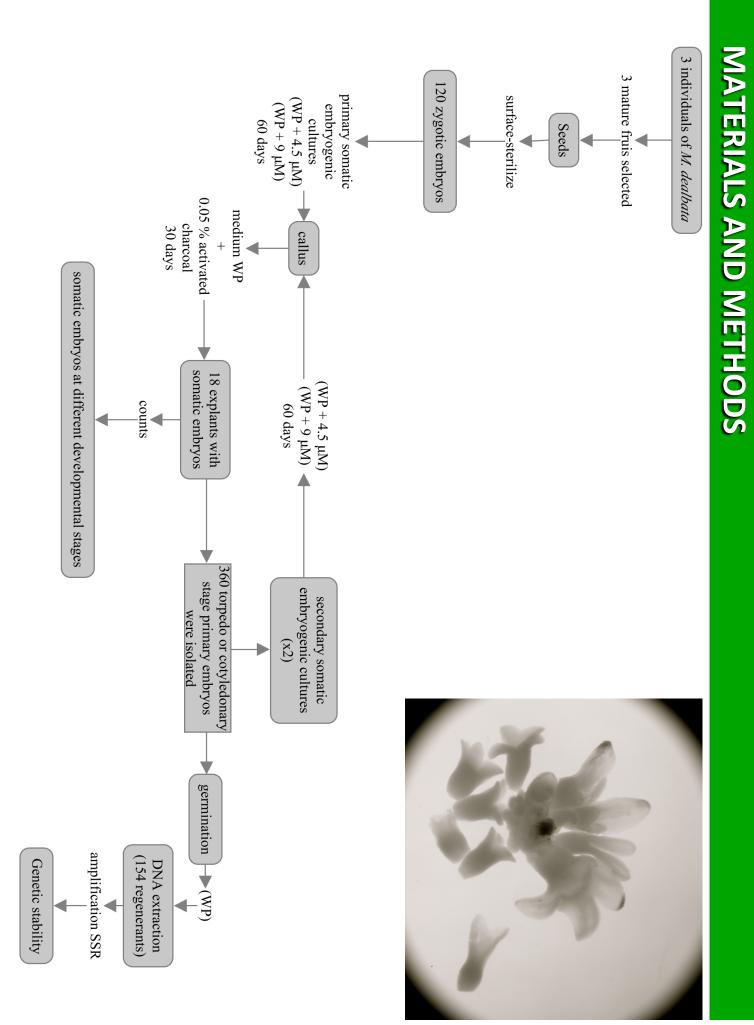


Assessment of genetic stability in somatic embryogenesis regenerated plants of Magnolia dealbata.

³Centro Regional del Bajío-Instituto de Ecología, A.C., Pátzcuaro, Michoacán, México de Jesús García-Montoya¹, Marie-Stéphanie Samain³, Mauricio Quesada-Avendaño⁴ Angélica Chávez-Cortazar¹, Martín Mata-Rosas¹, Alberto Ken-Oyama Nakagawa², José Instituto de Ecología, A.C., Xalapa, Veracruz, México Escuela Nacional de Estudios Superiores-UNAM, Morelia, Michoacán, México

⁴Instituto de Investigaciones en Ecosistemas y Sustentabilidad-UNAM, Morelia, Michoacán, México


Magnolia dealbata belongs to the family Magnoliaceae, it is an endemic and endangered species from Mexico with medicinal and ornamental importance (Alonso-Castro et al., 2014).

pressure on natural populations (Chandrika et al., 2008). In vitro propagation is an alternative that could help in decreasing

biotechnology methods because of its potential to rapid multiplication Plant tissue culture is recognized as one of the valuable components of and Shekhawat, 2013). of true-to-type genotypes and to conserve valuable germoplasm (Dhir

- In general, clonal propagation through tissue culture should generate cultured (Carloni et al., 2014). individuals identical to the mother plant from which they were sub-
- identity. propagation of M. dealbata including the assessment of the genetic propagated by somatic embryogenesis, there are no reports on in vitro Although M. vovidesii (considered before as M. dealbata) has been

stability of regenerated plants of *M. dealbata*. secondary somatic embryos in repetitive cycles and the genetic concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) on The purpose of this study is to determine the effects of genotype,

RESULTS AND DISCUSSION

somatic embryos from explants of Magnolia dealbata. Table 1. Effect of PGR, cycles and genotypes on the development of

Globular	Heart shape	Torpedo	Cotiledonary
980^{a}	599 ^a	735 ^a	1172 ^a
371 ^a	245^{a}	400^{a}	516 ^a
70	76	172	180
232	155	171	228
69	14	57	108
568^{a}	320^{a}	250^{a}	546^{a}
121	17	42	180
386	256	170	299
61	47	38	67
41 ^a	34^{a}	85 ^a	110^{a}
18	23	5	31
23	11	67	53
0	0	13	26
764 ^a	498 ^a	475 ^a	1324 ^a
105^{a}	100^{a}	131 ^a	433^{a}
45	32	32	240
41	63	54	126
19	5	45	67
331 ^a	177 ^a	162^{a}	486^{a}
157	70	27	213
44	44	53	125
130	63	82	148
328^{a}	221 ^a	182^{a}	405^a
105	29	9	119
139	150	105	182
84	42	89	104
	Globular 980^a 371^a 70 232 69 568^a 121 386 61 41^a 18 23 0 764^a 105^a 41 19 331^a 157 44 157 44 130 328^a 105 139 84		Heart shape 599^a 245^a 76 155 14 320^a 17 256 47 320^a 11 0 47 320^a 111 0 47 34^a 5 111 0 498^a 100^a 5 177^a 5 177^a 5 177^a 63 221^a 221^a 220 150 42

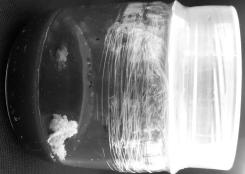
HS-cycle 9 μM 2,4-D, 1012: r²=0.99, *p*=0.01 **T-cycles** 4.5 μM 2,4-D, 1015: r²=0.99, *p*=0.02

A strong genotype response is known across all types of explants and species. The differences are usually associated with the variations between genotypes in susceptibility to genetic programming and reprogramming of embryogenically competent cells by external factors

(Wilhelm et al.2005).

\mathbf{Z}
~
$\mathbf{\underline{\nabla}}$
H
Sic
OISC
DISC
DISCU
DISCUS
DISCUS
DISCUSS
DISCUSSI
DISCUSSIC
DISCUSSIO
DISCUSSION

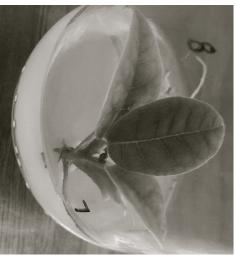
Table 2. Effect of PGR, cycles and genotypes on theinduction of secondary somatic embryogenesis fromexplants of Magnolia dealbata.


I							
		4.5	4.5 μM 2,4-D	+D	9	9 μM 2,4-D	
Genotype	Response	C1	C2	C3	C1	C2	C3
1020	Ν	20	30	30	20	30	30
	% ER	75	43	26.7	55	36.7	13.3
	TN	262	576	298	360	1111	213
	MN	13.1	48	18.6	12.9	46.3	17.8
	SE	52.4	192	74.5	51.4	185.2	71
1015	Ν	20	30	30	20	30	30
	% ER	25	43	33.3	45	60	36.7
	TN	349	284	136	498	786	248
	MN	17.5	11.8	8.5	17.8	32.8	15.5
	SE	69.8	47.3	34	71.7	131	62
1012	Ν	15	30	30	20	16	20
	% ER	40	23	36.7	30	25	15
	TN	467	266	423	77	154	39
	MN	23.4	9.5	36.4	9.6	12.8	4.9
	SE	93.4	38	105.8	38.5	51.3	19.5
Total	Ν		235			216	
	% ER		38.4^{a}			35.2^{a}	
	TN		3061^{a}			3486^{a}	
	MN		19.6^{a}			18.9^{a}	
	SE		78.6 ^a			75.7 ^a	

NE: explants number; % ER: embryogenic response; TN: total number of somatic embryos; MN: mean number of somatic embryos; SE: somatic embryos per explant.

			MN						% ER				Response
	9			4.5			9			4.5		μΜ	2,4-D
1012 ^a	1015 ^a	1020^{a}	1012 ^a	1015 ^a	1020^{a}	1012 ^a	1015 ^a	1020^{a}	1012^{a}	1015 ^a	1020 ^a		Genotye
3^a	2^{a}	1^{a}	3^{a}	2 ^a	1^a	3^{a}	2^{a}	1 ^a	3^{a}	2^{a}	1^{a}		Cycle
			SE						TN				Response
	9			4.5			9			4.5		μM	2,4-D
1012 ^a	1015 ^a	1020^{a}	1012 ^a	1015 ^a	1020^{a}	1012 ^a	1015 ^a	1020^{a}	1012 ^a	1015 ^a	1020 ^a		Genotye
3^a	2^{a}	1^a	3^{a}	2^{a}	1^a	3^{a}	2^{a}	1^{a}	3^{a}	2^{a}	1^{a}		Cycle

It is well known that genotype has an effect on expression of regeneration competence. It was found that some genotypes respond well whereas others are recalcitran, which suggests that regeneration is genetically controlled (Shoemaker *et al.* 1991), but our data do not support it.



Mmc277 (1), Mmc493 (2), Mmc076 (3), Mmc182 (4), Mmc059 (5), Mmc001 (6), Mmc187 (7) and Mmc051 (8) loci. Table 3. Variation frequency (%) of mutated plants of Magnolia dealbata at

				L	Loci			
	1	2	ယ	4	J	6	1 2 3 4 5 6 7 8	8
9 μM 2,4-D								
N. analysed plants 71								
N. mutated plants	26	0	31	6	39	S	26 0 31 6 39 5 22 15	15
Variation frequency (%)	36.6	0	43.6	8.4	54.9	7.0	36.6 0 43.6 8.4 54.9 7.0 30.9 21.1	21.1
4.5 μM 2,4-D								
N. analysed plants 83								
N. mutated plants	18	<u> </u>	4	22	50	—	18 1 4 22 50 1 39 24	24
Variation frequency (%)	21.6	1.2	4.8	26.5	60.2	1.2	21.6 1.2 4.8 26.5 60.2 1.2 46.9 28.9	28.9

The eight loci showed different degrees of variability, indicating that a specific locus is particularly susceptible to DNA rearrangements.

RESULTS AND DISCUSSION

obtained by dividing the number of mutated alleles by the total number of alleles analysed. microsatellite in each variable is presented as MMF (mean mutation frequency). The mutation frequency was frequency of perfect genotypes (FPG). The mean of the mutation frequencies of the alleles observed in the eight Table 4. The frequency (%) within each concentration, families and induction cycles are presented as the

4.5 μ M 2,4-D, 1020: r=0.99, p=0.021

%FPG-%ER

%FPG-cycles

	26.67	64.2	9	14	C3
	21.43	75	6	12	C2
1. S. T. S. C.	15.38	81.8	9	11	C1
	38.89 ^a	58.5 ^a	10	17	F1012
	39.13	45	9	20	C3
	22.22	64.2	9	14	C2
	22.22	60	9	15	C1
· · · ·	3 9.13 ^a	39.1 ^a	9	23	F1015
	23.08	66.6	8	12	C3
	37.5	61.5	8	13	C2
	37.5	50	8	16	C1
	50.00^{a}	36.4 ^a	8	22	F1020
	42.67 ^a	44.8 ^a		4.5 μM 2,4-D	
grandiflora.	6.25	88.8	8	9	C3
et al.2005), it's possible that M. dealbata is ROS such as M.	21.05	72.7	8	11	C2
DNA damage, incluiding microsatellite instability (Wilhelm	21.05	72.7	8	11	C1
stress and reactive oxygen species (ROS) are known to cause	31.82 ^a	61.5 ^a	5	13	F1012
Plant tissues in vitro are exposed to high levels of oxidative	7.14	72.7	8	11	C3
according with Burg <i>et al.</i> (2007).	23.53	66.6	8	12	C2
stress, which also includes adaptation to in vitro conditions	23.53	57.1	8	14	C1
mutation rates found might reflect the plasticity to adapt	23.53 ^a	50^{a}	8	16	F1015
tissues during the somatic embryogenic process. The high	16.67	80	8	10	C3
There is a rick of mutations accumulating in amhresogenic	23.08	63.6	7	11	C2
-	56.52	36.3	8	22	C1
4.5 μ M 2,4-D, 1012: r ² =0.99, p= 0.02	56.52 ^a	33.3^{a}	8	24	F1020
– MMF-cycles	37.29 ^a	48.29 ^a		9 μM 2,4-D	
$ p$ $\mu_1 \nu_1 z, \tau - \nu_{1.1} - 0.5 2, p - 0.0 z$	Mutation frequency	% FPG	No. of perfect genotypes	No. of genotypes	
$0 \text{ mM} 2 1 \text{ D} \text{ r}^2 = 0.53 \text{ m} = 0.02$	·				

on secondary somatic embryogenesis of Magnolia dealbata. The variables tested (genotype, PGR concentration and cycles) had no effect

Genetic fidelity was assessed using SSR marker which has revealed the instability among the regenerants. polimorphic nature ($\approx 51\%$) of the regenerants indicating a high level of genetic

Our results provide preliminary evidence for protocol of somatic contribute to plant genetic improvement programs. the regenerated plants. On other hand, that induce genetic variability, could embryogenesis of Magnolia dealbata in inducing genetic instability. All these could represent a very serious problem for preserving the genetic integrity of facts should be taken into consideration for clonal propagation, because it